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Using a Monte-Carlo method, we study the behaviour of different lattice models of a linear macromolecule 
in the 0-point region. Paying most attention to the testing of new theoretical concepts of the two-dimensional 
0 point 1,2, we give a new interpretation of some numerical results of our previous work 3'4 and generalize 
others. We confirm the assumption of the universality of the value of the tricritical exponent v t--- 4/7. The 
values of vt for a self-avoiding walk (SAW) on triangular, square and honeycomb lattices as well as for 
two special models, viz. infinitely prolonging self-avoiding walks (IPSAW) 3 and infinitely growing 
self-avoiding walks with nearest-neighbour interactions (IGSAWN) 5, lie between 0.56 and 0.59. The slight 
differences between these results can be explained by the effect of the corrections to scaling, which have 
different values for different models. The values of the crossover exponent ~0 t are confined between 0.42 
and 0.6, which is not in complete contradiction with the value tp, = 3/7 for the 0 point, proposed elsewhere 2, 
but differ from our previous result q~t =0.6___0.1 obtained earlier a'4 without extrapolation to the limit 
N ~ ~ ,  where N is the length of a chain. The values of the free-energy exponent Yt determined in the present 
work lie between 0.98 and 1.07, and, thus, do not coincide with the value of ~t = 8 / 7  proposed by others 2. 
The value of y ,=0.5+0.05 that we obtained for a polymer confined in a half-space is in complete 
contradiction with the above result 2 for the 0 point. As a whole, our results are in good agreement with 
recent work 6'7 using a similar technique for shorter SAWs on a square lattice. 

(Keywords: polymer solution; coil-globule transition; two-dimensional lattice models; Monte-Carlo method; random-walk 
models; tricritical exponents; theta points; universality classes; scaling) 

I N T R O D U C T I O N  

In the past few years some very interesting theoretical 
results concerning the behaviour of a two-dimensional 
polymer chain near the 0 point have been obtained L2. 
However,  the problem of the universality of the 
two-dimensional 0 point is still rather ambiguous TM. 
De Gennes in 1975 was the first to describe the 0 point 
as a tricritical point 12. In the three-dimensional case 
(d=3)  the question about  the values of tricritical 
exponents appeared to be rather simple because d = 3 is 
the upper critical dimension for the three-body inter- 
actions and, therefore, the values of tricritical exponents 
are Gaussian: vt = q~t = 1/2, ~t = 1. In the two-dimensional 
case (d= 2) this question is still open. The discussion on 
the values of the tricritical exponents in two dimensions 
was initiated by the work of de Gennes ~2, where the 
mean-field values vt=2/3 , tp t= l /3  as well as the 
field-theory values vt=0.505, tpt=0.64 were proposed. 
The latter were obtained by means of the e-expansion 
method in powers of e = 3 - d  for the model q~4+q~6 
(q~R") in the limit n ~ 0 .  It should be mentioned that, 
for the ordinary critical point of the ~o 4 model in the limit 
n-*0, characterizing the behaviour of a long polymer in 
a good solvent, both mean-field and e-expansion methods 
give ~3 very close values for the critical exponent v. 
Moreover,  in the two-dimensional case the mean-field 
value v = 3/4 coincides with the exact value, obtained by 
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Nienhuis 1. by means of the Coulomb gas model. Such 
a huge discrepancy between the predictions of these two 
methods for the tricritical exponents in two dimensions 
aroused numerous theoretical, numerical and experi- 
mental attempts to determine their true value 15-44. For  
a long time, however, these attempts did not lead to any 
reliable result. Eventually, in 1985, a number  of works 
appeared simultaneously, in which intermediate values 
of the exponent vt close to 4/7__-0.57 were obtained 
independently and by different methods 3'5'24'3s. 

The most  interesting one of these was the work of 
Weinrib and Trugman 24, who introduced a new type of 
random walk, called a smart kinetic walk (SKW). On 
the one hand, this walk can be considered as a model of 
a polymer ring on a honeycomb lattice, with the 
interaction of all nearest-neighbour (NN) and some 
next-nearest-neighbour (NNN) monomers.  On the other 
hand, it can be considered as the external perimeter (hull) 
of a cluster on the dual triangular lattice at the 
percolation threshold. The fractal dimension of the hull, 
dh, as has now been strictly established 4s, is equal to 7/4. 
As was generally acknowledged, a polymer with local 
monomer  interaction of any type has to belong to one 
of three universality classes: (i) the class of good solvents 
in which the dependence of the mean size D of a 
macromolecule v e r s u s  its number  of links N is described 
by the asymptote:  

D ~ N  v (v=3/4)  (1) 

(ii) the class of poor  solvents in which: 

O ~ N lid (d = 2) (2) 
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Table 1 The values of tricritical exponents, according to different literature sources 

Theory, method Year Ref. v t ~ot 7t 

8-expansion 1975 12,15 0.5055 0.6364 1.0103 
1984 16 = 0.55 0.8 1.01 
1986 17,18 0.5055 0.6364 1.01 

Mean-field theory of Flory's type b 1975 12, 19 2/3 1/3 - 

Mean-field theory of globulae--coil transition 1980 23 3/4 1/2 - 

Theory of percolation 1985 24 0.57 - - 

Kinetically growing walks 1984 25 0.66 - - 
1985 5 0.56 - 1 

Concepts of universality classes 1986 26 4/7 - - 
1987 1 4/7 - 1? 
1987 2 4/7 3/7 8/7 

Theory of superconformal invariance 1988 27 4/7 3/7 15/14 

Method of exact enumeration 1985 28 0.505 0.64 - 
1986 29, 30 0.53 0.64 1.0 

Monte-Carlo methods 1982 31 0.5055 0.64 - 
1982 32 0.66 - - 
1985 3,4 0.59 0.6 - 
1988 33 0.58 0.6 1.0 
1988 6,7 0.57 0.52 1.1 
1988 34 0.57 0.8 1.133 
1988 35 ~0.5 ~0.5 - 

Methods of real-space renormalization 1981 36 0.53 0.5 - 
1987 37 0.49 - - 

Methods of transfer matrix 1985 38 0.55 - - 
1987 39 0.55 0.48 0.99 

Method of fractal lattices 1987 40 0.546 - - 

Measurements of surface tension in real experiments 1980 41 0.56 - - 
1985 43 0.51 - - 
1983 42 0.51 0.64 - 
1988 44 >0.53 - - 

"Ref. 16 contained an error that was found later in refs. 17 and 18 
~Flory himself found in ref. 19 only the exponents v and vt in three dimensions. For 
applied in refs. 20-22. 

the exponents vt and ~Pt in two dimensions his method was 

and  (iii) the class of 0 solvents with asymptote :  

D,'- ,N ~' (1/d<~vt<~v) (3) 

According to this idea and  taking in to  account  the value 
of d h = 7/4 (ref. 1), one can immediate ly  conclude that :  

vt = 1/dh = 4/7 (4) 

Subsequent ly  Duplan t i e r  and  Saleur 2 constructed a new 
model  of a polymer  in a solvent  with N N  and  N N N  
interact ions.  In  their model ,  the polymer  is represented 
by a walk on a dilute honeycomb  lattice, i.e. a lattice in 
which some of the hexagons are forbidden for the walk 
with probabi l i ty  p, the value p -  1/2 corresponding to the 
reduced tempera ture  z-~ T - O  of the system. Fo r  this 
model  they obta ined  the exact values of the tricritical 
exponents :  

v t = 4/7 opt = 3/7 ~'t = 8/7 (5) 

Thus  these values appeared very likely to be the exact 
values of the tricritical exponents  characterizing the 
behaviour  of any  two-dimens ional  polymer  near  the 0 
point .  However,  this propos i t ion  is based only on the 

general  concept  of critical p h e n o m e n a  that  the properties 
of a system near  the critical point  mus t  no t  depend on  
the microscopic structure of the model  (the geometry of 
local interact ions,  the type of lattice, and  so on) and  
needs careful numerica l  and  experimental  testing. 

Recently a proposal  was put  forward in some 
theoretical papers 8-11 that  the 0 point  of a polymer  with 
N N  interact ions only and  the tricritical poin t  of the 
model  2, which is called the 0' point ,  belong to different 
universal i ty classes. However,  the universali ty of the 
exponent  v t=4 /7  has been confirmed in m a n y  recent 
works 5'6'33-35. The latest experimental  measurements  44 
of the exponent  vt, which have established the lower 
b o u n d a r y  for its value vt~>0.53, also do not  contradict  
these results (cf. earlier works41'43). 

O n  the contrary ,  the values of the exponents  ~'t and  ~Pt 
appear  to be non-universa l ,  especially if one compares 
the value of ~t = 8/7 (ref. 2) with the exact value ~t-~- 1 for 
the model  of an infinitely growing self-avoiding walk s , 
which can also be considered as a model  of a polymer 
under  0 condit ions.  

In  Table I we summarize  all know n  at tempts  to 
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determine the tricritical exponents of a two-dimensional 
polymer. The aim of the present work is to add one more 
line to this table. Our paper has the following structure. 
The Monte-Carlo technique is described first. Then we 
investigate the dependence of chain size on temperature 
and number of links in order to determine the 0 
temperature and the critical exponent vt for each model. 
In the following section we analyse the free energy and 
determine the exponent ~t- The crossover exponent ~ot is 
then determined and the scaling functions are constructed. 
The final section contains a detailed discussion of our 
results and their connection with recent results of other 
authors. Finally, the article contains three appendices 
devoted to some special questions of the behaviour of 
random-walk models. 

MONTE-CARLO SIMULATION TECHNIQUE 

We study three models of a macromolecule with one 
lyophilic end in a solvent, which we call one-prolonging 
self-avoiding walks (1PSAW) on square (1PSAWS), tri- 
angular (1PSAWT) and honeycomb (1PSAWH) lattices. 
Besides this, we study the model of an infinitely prolong- 
ing self-avoiding walk on a square lattice (IPSAWS), 
corresponding to the initial parts of very long macro- 
molecules. These initial parts, owing to self-similarity, 
have the same conformational characteristics as the 
whole chain but are more convenient for numerical study. 
The idea of nPSAW, where n is an arbitrary integer or 
infinity, appeared for the first time some while ago a6'47. 
We also generalized the model of an infinitely growing 
self-avoiding walk on a square lattice (IGSAWS) 5, closely 
related to IPSAWS, introducing interaction between 
nearest-neighbour monomers. 

The quality of solvent was simulated as usual by 
introducing the interaction energy E = - O k T  (k is the 
Boltzmann constant, T is absolute temperature) for every 
pair of monomers occupying neighbouring lattice sites 
but not being connected by one step. We regard as 
monomers the lattice sites through which the walk has 
passed, so that a walk of N steps corresponds to a 
macromolecule of N +  1 monomers and N chemical 
bonds. Thus, the internal energy of the ith walk 
containing r h pairs of interacting monomers is equal to 
-~q /k  T. 

In each numerical experiment we constructed M 
statistically independent SAWs by means of the Rosen- 
bluths' method 4a modified according to the recommend- 
ations of McCrackin 49's°, and expanded by introduction 
of the construction potential W (ref. 3) and the topological 
factor tog, which allow one to increase the importance 
of sampling and to moderate the attrition (the dying out) 
of chains as their length N is growing, respectively. 

The j th (j ~> 2) step of the ith walk (i = 1,2 . . . . .  M) can 
be made to one of the au neighbouring free sites. 
Obviously, 0~<au~<z-1, where z is the coordination 
number of the lattice (z = 4 for square, z -- 6 for triangular 
and z = 3 for honeycomb lattices). The probabilities PUk 
of transitions to these sites are not equal to each other 
but depend on the number qok (k= 1,2 . . . . .  ao is the 
number of the site) of new contacts between the 
monomers that would appear if the step were made to 
the kth site. These probabilities are determined by the 

equation: 

where 

Pijk --~- Pijk/ (k~= l Pijk I (6) 

Pok = exp(WqOk)tijk (7) 

where qJ is the construction potential and tUk is the 
topological factor. 

Varying W, one can obtain with greater probability 
conformations of chains that have many (W > 0) or few 
(qJ < 0) monomer-monomer contacts. 

In the standard SAW model tOk-- 1, but in our models 
tUk can be equal to zero or unity (see later), so that the 
number a~i of real opportunities of making the j th  step 
can be less than or equal to the initial number of free 
neighbouring sites: 

o'q 

a'ij= ~ tOk <<. alj (8) 
k = l  

When tr'~ = 0 the j th  step of ith walk is impossible in the 
framework of the given model. Such a walk should be 
terminated and should be included in the sample of longer 
chains (N >~j) with zero statistical weight. 

The average value of a conformational characteristic 
Q is calculated according to the equations: 

M 

(Q> = ( l /M) ,~, Q/f//(Z> (9) 
i - 1  

M 

(Z )= (1 /M)  ~" f~ (10) 
i = 1  

Here Q~ is the value of the conformational characteristic 
for the ith walk and F~ is the statistical weight of the ith 
walk: 

fi = rib/wl (11 ) 

where w/= 1 for a walk that has attained the given length 
N and w/--0 for a walk that has been terminated at the 
(N/+ l ) th  step (a/,N,+I=0, Ni<N), bi=exp(qi~) is the 
Boltzmann factor and r/is the Rosenbluths' factor. The 
latter is inversely proportional to the probability of 
construction of the ith walk: 

r~=l/p~=l/i~=lp q (12) 

where Po = p/jk/j is the probability of the kqth direction 
of the j th  step that has been chosen during the 
construction of the ith walk. If the walk has been 
terminated, i.e. if N i < N, the product r/w~ is put equal 
to zero. 

It should be noted that: 
M 

~, w/=M(N) (13) 
/ = 1  

where M(N) is the number of walks in the given sample 
that have attained the length N. 

Consider now how to choose the topological factor 
tqk. It is known that the ratio M(N)/M of the number 
of 'survived' walks of length N to the total number 
of all started ones decreases exponentially when N is 
growing. As shown in Appendix l, this ratio appears to 
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be the Monte-Carlo estimate of the partition function of 
the model of kinetically growing walks (KGW) 25 and 
must obey the equation: 

M(N)/M ~ ZKow(U),-- ~ U  ox°w-x (14) 

where (o<1 is some non-universal constant and 
),Kow=V=43/32 (ref. 14) is the critical exponent of the 
free energy of the standard SAW model without 
monomer interaction and does not depend on the type 
of lattice and the value of~F. For SAW on a square lattice 
(W=0, ti~k--1), (0=0.97751. In order to increase (o and 
thereby to enrich the sample in long chains with the 
number of all started walks M being unchanged, we 
define tij k as: 

t _ 0 Ok--{1 rliJk=2--1 (15) 
t/ijk < z -- 1 

Using this rule, we obtain only such SAWs that can be 
prolonged at least by one step. We call this model the 
model of one-prolonging self-avoiding walks (1PSAW). 
The mathematical expectation value of the ratio M(N)/M 
for 1PSAW has, as shown in Appendix 1, the asymptote: 

M(N)/M,~ ~ N  ~- ~ (16) 

where (x > Go. The value of (~ depends on z and ~t' (for 
z=4  and ~ = 0 ,  (t =0.987). The exponent 7 is universal 
and is equal to 43/32 as in ref 14. 

Naturally, the number Lt(N) of all 1PSAWs N steps 
long is less than the number L(N) of all SAWs of the 
same length and satisfies the following inequality: 

L(N + 1) L(N)~ 
L(N)>L~(N)> - -  > - -  (17) 

z - 1  z - 1  

where ~ is the connective constant of a lattice. However, 
all the asymptotic properties of the 1PSAW model are 
the same as those of the SAW model and can differ only 
by the factor (I+O(1/N)). Besides the 1PSAW model 
we have also studied the model of infinitely prolonging 
self-avoiding walks on a square lattice (IPSAWS), which 
make an even smaller subset of all SAWs. In this model 
the factor t~k is equal tO zero for all such directions of 
the jth step that ultimately will lead after some steps to 
a trap, i.e. to the impossibility of prolonging the ith walk 
without self-intersection. For all other directions the 
factor t ~  is equal to unity. The algorithm for constructing 
IPSAWS was invented in ref. 3 and simultaneously in 
ref. 5, where its detailed description can be found. 

The number M(N) in the IPSAW model does not 
depend on N and is equal to the number M of all initially 
started walks, which is very advantageous for construct- 
ing long walks. On the contrary, the number L=(N) of 
all IPSAW of length N is less than L(N), but the limit 
of their ratio l imN~ Lo~(N)/L(N) is still unknown. The 
processing of data for the exact enumeration ~ gives for 
Loo (N) the same parameters of the asymptote as for L(N). 
Our numerical data also show evidence of coincidence 
of the universality classes of IPSAW and 1PSAW (see 
Appendix 2). 

Besides the 1PSAW and IPSAW models we have also 
studied the IGSAWS model on a square lattice with 
interaction of nearest-neighbouring monomers ( -  0.06 ~< 

~< 0.06), which differs from the IPSAWS model only in 
that the factor r~ in equation (11) is always equal to unity 
and W =0. Besides the models of walks on an infinite 
plane we also study the 1PSAWS model confined to the 

half-plane x t> 0 with the origin attached to the boundary 
X - - 0 .  

Now we shall describe how to choose the optimal value 
of the construction potential ~.  

The quantity (Z )  in equation (10) is an estimate of 
the partition function of a given model. Its variance, 
apparently, is M times less than the variance off~. But 
the variance off~ is extremely large, owing to the factor 
r~ when • is close to zero and the factor b~ when • is 
large. For the classical Rosenbluths' method (~=0)  49 
the variance off~ attains its minimum at some value of 

=¢y ,  when these two factors compensate each other. 
This value ¢ i  is somewhat less than the hypothetical 
value q)0, which corresponds to the 0 point. For example, 
for the SAWH model (~=0)f~  is exactly equal to wi 
when • = In 2, and a non-zero variance off~ exists at this 
value of parameter • only because some walks do not 
attain the given length N and their statistical weightf~ = 0. 
It should be noted that the SAWH model with * =ln 2 
is identical to the model of kinetically growing walks 
(KGW) on a honeycomb lattice 2s. 

Varying the construction potential, we can decrease 
the variance of f~ for the values of ¢I) close to *s- For 
each value of ~, an optimal value of ~ =  ~opt(*) exists 
at which the variance off~ attains its minimum. When 

< * I ,  ~opt is negative, and when ¢ > *I ,  ~ept is positive. 
However, in the regions • > ~0 or • < 0, we cannot obtain 
any considerable decrease in the variance off~ using the 
construction potential. 

In order to speed up the computer routine, we calculate 
the effective number of walks in the sample Mar instead 
off~, Mar is determined by the equation: 

M 

Maf = ~ ffffmax (18) 
i = l  

where fmax is the maximal value of statistical weight fi 
that has occurred in these M trials. It has been 
established a that one can consider the data for a given 
sample as satisfactory if Mar > 100. (For these values of 
Meff, the coefficient of variation is less than 1%.) 

When obtaining a sample of long chains (of length 
Nm,x) constructed with the same value of ~ ,  we calculate 
averages at some smaller values of N (N = N o + kAN, 
k=0, 1,2 . . . . .  (Nm,x-No)/AN) and for some values of 
interaction parameter ~. At this point the Rosenbluths' 
method is more convenient than the method of 
Metropolis used elsewhere al'a2'aS, where it is necessary 
to construct a new Markovian chain for each value of 
N and ~. Naturally, the errors of the obtained data 
depend strongly on N and ~. The number of walks M 
in different samples is a quantity of order 10 6, the length 
Nm, ~ of the walks is 150-300 steps and AN is equal to 
l0 or 20. In all samples the condition Mely> 100 is 
satisfied for all values of N and in the majority of samples 
the condition Meff> 1000 is satisfied for N =  150. 

The arithmetic mean of the statistical weightf~, giving 
the estimate of the partition function, and the ratio 
M(N)/M, being an estimate for the partition function of 
the KGW model, have been calculated in each sample. 
Besides these we calculate using equation (9) the 
following characteristics of the chain. 

(i) The square of the end-to-end distance: 

2 2 2 Ri = xm + YIN 
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where x u, Yu are the coordinates of the jth monomer of 
the ith chain (Xio =0, Yio =0, xll = 1, Yil =0). 

(ii) The square radius of gyration: 

Xij Xik S ~ - N + I ~  N + l k  

1 N ~2]  
+(Y~J N+lk~=oY'J,/ J (19) 

(iii) The number of contacts between the monomers, 
t/i, which is proportional to the internal energy. 

(iv) The square of this number, ~/2, which is necessary 
for calculation of the specific heat. 

DETERMINATION OF 0 POINT AND 
TRICRITICAL EXPONENT v t FROM THE 
DEPENDENCE OF CHAIN SIZE ON NUMBER 
OF LINKS 

As mentioned before 3, the main problem in the analysis 
of the numerical data is how to determine correctly the 
location of the 0 point, for without that, the determin- 
ation of other characteristics of the transition, especially 
the critical exponents, cannot be carried out. 

The most obvious change in the coil-globule transition 
is demonstrated by the mean sizes of the chain <R  2) 
and (S 2) (see Fioure 1, which represents the dependence 
of (R 2) on • for all models studied in the present paper). 
The longer the chain, the faster it grows with increase of 
temperature T, which can be identified in the numerical 
experiment with 1/(I). 

It is clear that the neighbourhood of the 0 point must 
correspond to the region of the most rapid decrease of 
(R 2) with increase of (I) or, in other words, the 
neighbourhood of the inflection point of these curves. 
The inflection points are located in the parameter 
intervals (0.4, 0.5), (0.6, 0.7) and (0.9, 1.1) for the 
1PSAWT, 1PSAWS and 1PSAWH models, respectively, 
which agrees with the 0 values of parameter (I), 
determined by other methods. However, this method of 
determination of the 0 point is utterly inaccurate and 
may lead to erroneous results, cf. ref. 28. We developed 3 
a more reliable method of simultaneous determination 
of the 0 point and the exponent v t using the changes of 
the slope of molecular-mass dependences of chain size 
plotted on log-log scale at different values of parameter 

~. This method is based on the scaling theory of de 
Gennes 12 in which the 0 point is determined as the point 
of change of the asymptotic regimes of molecular-mass 
dependences of the sizes of a macromolecular coil. The 
equations of that work 12 are the simplest equations that 
realize a smooth crossover between two regimes above 
and below the 0 point (see equations (1)-(3)) and involve 
three free parameters, (I> 0, v t, tpt; on varying these, one 
can achieve the best agreement with experiment. It should 
be clear, however, that these asymptotic expressions are 
correct only in the neighbourhood of small z = (~o-  ~)/~ 
and large N, whereas the numerical experiment yields 
data mainly in the region of small N and large z. 
Therefore, the best coincidence with numerical data does 
not always ensure correct determination of ~0, vt, ~ot (see 
ref. 54). An important part here may be played by the 
unknown corrections to scaling, which can hardly be 
taken into account. We suppose, however, that it is not 
expedient to begin with the question about the correc- 
tions to scaling before the values of ~0 and v, have been 
determined. Moreover, the present work shows that our 
method of determination of the main tricritical exponent 
v t is practically independent of the corrections to scaling, 
which have different magnitudes for different lattices. 

On the contrary, we suppose that it is not correct to 
use the values ofv t and (Pt that have already been obtained 
by some other methods (say, by the e-expansion method) 
and then, for better agreement with numerical data, 
introduce the corrections to scaling, as has been done in 
ref. 31. These corrections may completely suppress all the 
information contained in the numerical data. The cor- 
rections to scaling are discussed in detail in Appendix 3. 

Thus, we begin to analyse the numerical data using 
the following simple scaling equation 12 as a starting 
point: 

( X 2 ) = N2V'f x(N~'z) (20) 

where (X2> is the mean dimension of a chain ((R2> or 
($2~ depending on context) and z is reduced temperature, 
z=(~o-~)/~.  We assume the function fx(Y) to be 
positive, twice continuously differentiable and mono- 
tonic, dfx(y)/dy>O. Hence, 2~x(N), the tangent of the 
slope of the dependence of ln(X2~ on In N, is determined 
by the equation: 

d(ln(X2)) - 2vt + 2q~t f:~(Y) y 
2vx(y)= d lnN f x ~  

= 2v t + 2tpt/~x(y) (21) 

where y=N*'z and ~x(Y)= Yf.~(Y)/fx(Y). 
According to equations (1) and (2) the function ~x(Y) 

must have limits: 

lim ~x(Y) = # + = (v-  Vt)/(~t ~ 0 (22) 
y~oO 

lim ~x(y)=#_=(1/d-vt)/q~t<~O (23) 
y--* -- oO 

By differentiating the function 2~,x(y(N)) with respect to 
N, it can be shown that, when y is a sufficiently small 
positive number, the function 2~x(y(N)) is an increasing 
function of N, when y is small and negative, 2~,x(y(N)) 
is a decreasing function of N, and when y is exactly equal 
to zero, 2~,x(y(N)) is independent of N and equal to 2v t. 
It should be mentioned that the function ~x(Y), being 
monotonic within the neighbourhood of its single root 
y =0, may not be monotonic within its whole domain. 
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Table 2 Results of graphical determination of the 0 point and the exponent vt, using the dependences of the chain sizes (R  2) or <$2> (Figure 2) 
or of their ratio (Figure 3) on the number  of links N and the interaction parameter  • for different models. (The data  for the IGSAWS model are 
given in order to illustrate possible errors of the present method,  because it is exactly known 5 for this model that 0 = 0  and 2vt= 8 /7=  1.143) 

Type of 
dependence Quant i ty  1PSAWH 1PSAWT 1PSAWS IPSAWS IGSAWS 

(S 2 ) O0 + 1.00 0.41 0.63 0.65 --0.04 

O~- 1.05 0.43 0.67 0.69 0.00 

• ° 1.015 0.415 0.654 0.658 --0.024 

O~ 1.023 0.425 0.667 0.672 0.010 

2~+ 1.152 1.171 1.192 1.178 1.210 

At ÷ + 0.006 + 0.006 + 0.020 + 0.008 + 0.008 

2t_ 1.114 1.130 1.140 1.114 1.156 

Av_ --0.014 - 0 . 0 1 6  --0.014 - 0 . 0 1 6  -0 .012  

2t o 1.141 t.160 1.161 1.165 1.188 

( R  2 > O~ 1.00 0.41 0.63 0.65 --0.02 

O~" 1.05 0.43 0.67 0.69 0.02 

• ° 1.036 0.425 0.657 0.664 --0.009 

O~ 1.018 0.418 0.662 0.673 0.000 

2t+ 1.161 1.165 1.195 1.190 1.177 

A~+ +0.016 +0.014 +0.038 0.012 +0.008 

2~_ 1.113 1.110 1.131 1.109 1.110 

At _ - 0.006 - 0.014 - 0.018 - 0.030 - 0.022 

2% 1.126 1.138 1.152 1.167 1.156 

<R 2) / O~ 1.05 0.42 0.65 0.68 - 0.02 

6(S 2 ) A 1 0.06+__0.02 0 .04+0.02 0.04-t-0.02 0.04+0.02 - 0 . 0 1 + 0 . 0 4  

O_ +, O -  are the boundaries of • interval in which there is practically no dependence of t on N at largest 
t+ ,  t_  are t values on the boundaries O~ 
At +, At_ are the corrections to t +, t_ values connected with the possible dependence of t on 
0 %  2t  o are results of linear interpolation using the values O~,  t ±, At ± 
0'_ are the values of  • at which 2t(N)'-~ 8/7 (at large N) 

N (straight lines on Figure 2) 

It can be derived from our numerical data that, at large 
negative values of y, ~x(y)<#-  and, therefore, the 
function ~tx(y) must be decreasing in this region in order 
to satisfy condition (23). Passing through its minimum 
at some y < 0, the function ~tx(y ) tends from below to its 
limiting value/a_. The effect of non-monotonic behaviour 
of the function ~tx(y ), however, may arise due to 
corrections to scaling. 

Thus, it follows from the above-mentioned assump- 
tions that the dependence of the slope 2~x(N ) of the 
function ln(X2)(ln N) must in the vicinity of the 0 point 
change its character: 2~x(N) must increase above (T> 0 
or D<D0) and decrease with growing N below the 0 
point (T<O or D>D0). Exactly at the 0 point 2~x(N) 
must be equal to 2v t. These conditions give the 
opportunity for simultaneous determination of the 0 
point and the tricritical exponent yr. 

The value of the slope 2~x(N) was determined by means 
of the least-squares method, constructing a straight line 
by a group ofk = 5 or k = 3 neighbouring points {ln(X2)i, 
ln Ni}~= 1, minimizing the difference: 

k 
62= E { ln (X2) , -2~x (N) lnNi -Bx ( iV)}  2 (24)  

i=1 

where the value b7 is calculated by the equation: 

/~  = ( N I N 2 . . .  Nk) 1/k (25) 

When an attempt was made to draw the straight line 
through each pair of neighbouring points, the statistical 
spread of the values of 2~x(~7) was too large. The plots 

of the obtained dependences 2~x(N ) at various values of 
D for different models are shown on Figure 2 (see also 
analogous plots in ref. 3). 

As can be seen from Figure 2, the behaviour of the 
dependence 2~x(N) is really changing at some value of 
D=D0, which is in complete agreement with the 
above-stated conjectures. The values of (I) 0 for different 
models differ from each other greatly but the values of 
2v t appear to be close to each other and lie in the interval 
between 1.13 and 1.18 (see Table 2). Table 2 also contains 
the precise values of (I) 0 and 2vt obtained by means of 
graphical linear interpolation, which using the slopes of 
the dependences of Figure 2 finds the point D ° at which 
such a slope is approximately equal to zero when N is 
large. It is clear that one should take a rather cautious 
attitude to such interpolation, because for the IGSAWS 
model it gives negative D °, whereas it follows from 
general considerations s that for IGSAW D0 must be 
exactly equal to zero, at this value of D the constant 
value of the free-energy exponent ?t= 1 is observed. 
Nevertheless, all the results obtained for all five models 
and for dependences of (R 2) as well as for dependences 
of (S 2) testify to the good agreement between obtained 
values of v, and, thus, confirm the hypothesis of the 
universality of the value v t = 4/7. The slight differences 
between these values may be due to the influence of the 
corrections to scaling at small N, which have different 
amplitudes for different lattices. 

It should be mentioned that in the vicinity of the 0 
point the dependences 2~x(/V) for some models clearly 
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have non-monotonic behaviour. As a result, the precision 
of determination of O0 and vt is not high. This 
non-monotonicity can be decreased by processing the 
data using the value N +  x instead of N, where x is a 
value of the order of unity, which is different for different 
models. Such a procedure is equivalent to the introduction 
of an analytical correction to scaling and cannot serve 
as a guarantee of the precision of the results as well. It 
seems more reasonable to advance towards the region of 
large N, ignoring at the same time the data for short 
chains. For example, it is difficult for the IPSAWS model 
to choose between the values 0.65 or 0.67 for the value 
• 0. When 0=0.65, the values of 2~e(b7 ) have within the 
whole interval 51<b7<260 less changes than when 
0=0.67, but begin to grow at large N; whereas 
when • = 0.67, the values of 2~e (N) decrease considerably 
at small N but become almost constant and equal to 1.15 
when bT> 100, which is in good agreement with the 
theoretical value of 2vt= 8/7~ 1.143. 

An analogous but even more expressive picture can be 
observed in the case of the IGSAWS model. The 
dependence 2~R(N), obtained in our numerical experi- 
ment, undergoes the least changes at • = -0.02, whereas 
at the apparent 0 point at • = 0.0 it is decreasing until 
b7 = 150, and only when .N > 150 is it practically constant 
and very close to the hypothetical value 2v, = 8/7. 

One more quantity through the changes of which one 
can judge about the location of the 0 point is the universal 
ratio B= (R2)/6($2>; see ref. 17. Figure 3 illustrates the 
dependence of the quantity A = In B on the length of the 
chain N. According to the predictions of ref. 17, this 
quantity must be well behaved at large N and small z as: 

A = - A 1 + A2 N~°'z (26) 

where A1, A 2 are small positive numbers. According to 
this equation, A must increase with increase of N above 
and decrease below the 0 point. The curves on Figure 3 
must be concave above and convex below the 0 point. 
Indeed, it is these very effects that can be observed on 
Figure 3 for all models. Moreover, the value of parameter 

= Off at which the quantity A is practically constant at 
large N is very close to • 0, obtained by the previous 
method (see Table 2). The values of the constant A t are 
spread between 0.06___0.02 for the 1PSAWH model and 
-0.01 + 0.04 for the IGSAWS model, which contradicts 
the predictions of the e-expansion method, according to 
which At ~0.2. It is possible that the constant A~ is 
universal for all these models, because the observed 
values of A for different models may tend to the same 
limit when N tends to infinity, but from different sides 
and at different speeds. 

Unfortunately, our data on the mean number of 
contacts and specific heat (for the IPSAWS model they 
are discussed in ref. 3) do not allow us to determine with 
sufficient accuracy the location of the 0 point. We can 
assert only that these data do not contradict the values 
of ~0, obtained by previous methods. As a whole, our 
results for different models do not contradict (as can be 
seen from Table 2) the hypothesis of the universality of 
the value 2v t = 8/7, rejecting undoubtedly values less than 
1.1 or greater than 1.2. 

INVESTIGATION OF THE FREE ENERGY 

Another important characteristic of the coil-globule 
transition is the free energy, whose asymptotic behaviour 

also undergoes great changes in the vicinity of the 0 point. 
Let the absolute value of the free energy be defined as: 

F = l n ( Z )  (27) 

where ( Z )  is an estimate of the partition function, 
obtained by equation (10). According to general scaling 
concepts (see for example refs. 55 and 56), the partition 
function Z(N,  0 )  of an ensemble of chains of the length 
N with one fixed end can be written in the form: 

Z(N,  0 )  = N ~'- X fz(N*'z ) e N~'(®) (28) 

where 7t is the tricritical exponent of the free energy, 
whose value is to be determined by means of the 
numerical experiment, z is the reduced temperature, 
z~  (O0-O), qh is the crossover exponent (see equation 
(20)), co(O) is an infinitely differentiable function, which 
is of no importance in the neighbourhood of the 0 point 
but is necessary in the region of large IOl in order to 
obtain reasonable limits of Z(N,  0 )  when O ~  + 0% and 
fz(Y) is an infinitely differentiable function of scaling 
variable y = N*'z, which has the following asymptotes for 
y--* + ~ :  

~exp(C t yl/¢t)y(e-vt)/¢t y"-* -t- 0(3 
fz(Y)"~ [exp(C2yt/*'+ C3y p/'p') y- . . . -  oo 

(29) 

where Ca, C2, C3 are constants, 7 is the critical exponent 
of the free energy for the region of good solvents, whose 
exact value is equal to 43/32 (ref. 14), and p is an exponent 
that determines the power growth of the surface free 
energy of globules: 

Fs(N*'z)=CaNPz °/~ C3<0 , 0 < p < l  (30) 

Taking logarithms of both sides of (28), we obtain that 
the free energy at large N has, in solvents of different 
quality, namely good (O < O0), theta (O = O0) and poor 
(O > O0), the following asymptotes: 

(7-1)InN+o(1)  0 < 0 o  

F ( N , O ) = c o n s t + F o ( O ) N + ~ ( 7 t - 1 ) l n N + o ( 1 )  0 = 0 o  

((C3"cP/¢tN° +o(N°) 0 > 0  0 

(31) 

where Fo(O) is the reduced free energy per link in the 
limit of N--*~, being equal to the logarithm of the 
effective coordination number ~(0). 

According to equation (29), the quantity d2Fo/dO 2 
must in the neighbourhood of the 0 point obey the power 
law: 

d2F°(dP),,~ ~ CtKt(Kt-1) lO-O°lg ' -2  O < O °  (32) 

dO 2 (C2Kt(Kt-1)IO--O0] K'-2 0 > 0  0 

where Kt = l/oPt is the order of the phase transition in the 
limit N-- ,~.  In the case of very large values of O, when 
the main contribution to the free energy is due to the 
most dense conformations, the quantity Fo(O) must 
behave as: 

Fo(O) = O(z-  2)/2 + So + cot (O) (33) 

where O(z-  2)/2 is the internal energy of the monomer, 
being inside the globule, So is an entropy term, 
proportional to the logarithm of the number of most 
dense conformations per link, and the function cot(O ) 
tends to zero when O ~ .  

It is more convenient for numerical investigation of 
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the free energy to consider the derivative of the free energy 
with respect to the chain length N, dF/dN, which can be 
defined in the numerical experiment as the finite 
difference: 

AF2k= ~-~[F(N+k, CP)-F(N-k,~)] (34) 

As follows from equations (28) and (29), the slope of the 
dependence of AF2k versus 2=1/N, constructed at 
different values of ~, depends only on the scaling variable 
y =  N~z. Therefore, the quantity AF2k can be expressed 
in the form: 

fo AF2k(2, ~) = Fo + ?(z/2'*')d2' (35) 

where ~(z/2 '~') is the above-mentioned slope, which, 
according to the equations (28) and (29), obeys the 
following relations: 

~(0)=Tt-1 l i m ~ ( y ) = y - 1  
y'-* oO 

lim [~(y)/lylP/*']--Cap(1-p)<O (36) 
y--* -- oO 

In a good solvent, when y>> 1, the dependences AF2k(2) 
must be practically linear with slope ? - 1 .  As we 
approach the 0 point the dependences become convex 
and their slope decreases from 7 - 1  at small 2 to Yt-1 
at large 2. Exactly at the 0 point the dependence again 
becomes linear with slope ),=- 1. Below the 0 point (y < 0) 
the curves become concave and their slope ~(2) increases 
from -oo  when 2-,0 to 7t-1 at large 2. Thus, these 
dependences allow us to define simultaneously the 
location of the 0 point and the value of the exponent 7t, 
as was done above for the exponent v t by means of 
dependences ln(X2)(ln N). 

Figure 4 shows the dependences AF2k versus 2 within 
the whole interval of investigated values of • for the 
models 1PSAWS and IPSAWS. Note first of all that in 
Figure 4 all the above-mentioned effects can be observed. 
At small • the curves on Figure 4 are straight parallel 
lines with slope ~ that is close to ) ,-1 = 11/32. The 
intersection points of those lines with the y axis yield the 
values of Fo(O ). At ~ = 0  the data for ~ and Fo(0 ) 
practically coincide for both models and yield ~= 
0.34_ 0.01, Fo(0 ) = 0.97 _ 0.0005 or ~s(0) -- 2.638 _ 0.001; 
cf. ref. 57. Analogous studies give for the triangular 
(1PSAWT model) and honeycomb lattices (1PSAWH 
model) ~=0.34_0.02, 5T(0)=4.152_+0.002 and ~= 
0.33 _ 0.02, ~'n(0) = 1.847 _ 0.001 respectively. As • ap- 
proaches ~0 the slope of the curves on Figure 4 decreases 
with growth of 2 from its maximum value, attained at 
small 2, which is very close to 7 - 1  = 11/32 at first, but 
rapidly diminishing as • becomes closer to ~0. At 

= 0.67, the curve is practically straight and horizontal. 
Above • = 0.67 the slope of the curves becomes negative 
and its absolute value tends to grow with decrease of 2. 
Unfortunately, this tendency is not very pronounced, 
because of the great statistical spread of the data at large 
values of • and N. For the same reason, we cannot 
separate strictly the regions of concave and convex curves 
and therefore we cannot determine the value ~0 by the 
analysis of the free energy as precisely as has been done 
by the analysis of sizes in an earlier section. That is why 
the confidence interval of determination of 40 by means 
of the free energy is rather wide and includes the values 

and S. V. Buldyrev 

of ~0 summarized in Table 2 as well as the value ~0, for 
which the slope of the dependence of AF2k versus 2 is 
equal to zero. Figure 5 shows the analogous dependences 
for all the models within a narrow interval of • including 
the 0 point. In order to determine the exponent Yt we 
calculate the slopes 7t and ~_ of the curves at ~=O~- 
and ~ = ~ - ,  respectively (see Table 2). In all cases 
~_ <0<~+,  and therefore the value ~0, belongs to the 
interval between ~ -  and ~ - ,  whereas the value ), = 8/7, 
proposed in ref. 2, is always greater than ~ +. The results 
of the determination of the values O01 and 7 + for different 
models are summarized in Table 3. It can be seen from 
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Table 3 Determination of the free-energy exponent for different 
models. The values of ~+ and ~_ are the upper and lower estimates of 
the exponent ?t-1 and correspond to the values of interaction 
parameter @=@0 + and O=O o, determined in Table 2. The quantity 
@01 is the value of @ at which ~,t= 1. The quantity ~(@0~) is the value 
of effective coordination number L which corresponds to • = @01 

Quantity 1PSAWH 1PSAWT 1PSAWS IPSAWS 

~+ 0.04+0.02 0.10+0.02 0.12+0.04 0.08+0.02 
~_ -0.05+0.02 0.01+0.02 0.00+0.02 -0.12+0.02 
@01 1.03 _+ 0.02 0.43 _ 0.01 0.67_+ 0.01 0.67_+ 0.01 
3(@01 ) 2 .08+0.01 5.78___0.01 3.23+0.01 3.23+0.01 
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Figure 6 

0 . 0 2  

\ x ~ . 0 6  ' ~  
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~ \ x  \ o 
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q 5 

I n N  

The dependences of the logarithm of the finite difference for 
the second derivative of the free energy d2F/dN 2 on the chain length 
N for the IGSAWS model at positive values of parameter O, shown 
on the plot 

Tables 2 and 3 that the values O01 at which the slopes of 
the dependences AF2k(2) of Figure 5 are close to zero at 
small 2 practically coincide with the values @~ at which 
the slopes of the dependences of l n ( X  2) versus I n N  at 
large N are close to 8/7. That  is why the equation Yt = 1, 
which is exact for the IGSAW model, may be correct for 
the other models as well. Finally, we can assert with a 
high degree of reliability that for all the models the values 
of 7t lie within the interval between 0.98 and 1.08, which 
is in good agreement with the results of other work 6'7. 

Let us dwell now upon the determination of the 
effective coordination number z(@) when tI)<< @0. The value 
Fo(O) can be determined with sufficient accuracy by 
means of linear extrapolation of the dependence AF2k(2) 
for 2--*0. For  larger @ but still above the 0 point, the 
slope of these dependences undergoes considerable 
changes at small 2 and so linear extrapolation becomes 
impossible. We may try to perform quadratic extrapola- 
tion, postulating that at 2 = 0  the slope of the curves is 

exactly equal to 11/32, when • < • 0, and that at small 2 
the function AF2k(2) can be written in the form 

AF2k = Fo(O ) + 11 2 + b222 
32 

The result of the quadratic extrapolation will be the 
arithmetic mean of the results of linear extrapolations 
with the theoretical slope 11/32 and with the greatest 
slope, attained in the numerical experiment at small 4. 
It is dear ,  however, that in the close vicinity of the 0 
point the quadratic extrapolation also ceases to yield the 
necessary accuracy. When • > • 0 we can perform reliable 
linear extrapolation plotting the data against 21-p 
instead of 4. But in order to do that it is necessary to 
know the value of the exponent p, which can be 
determined from the slope of the dependence of 
ln[d2F(N,O)/dN 2] on InN.  The dependences of the 
corresponding finite difference ln{ (1/k2)[ F(O, N + k ) -  
2F(O, N) + F(O, N -  k)]} on In N for the IGSAWS model 
at different @ > 0  are shown on Figure 6. The slopes of 
these lines must be equal to p - 2 ,  from which it follows 
that p=0 .53+0 .05 .  It  is impossible to determine p in 
this way for other models because of a very large 
statistical spread of the data at large N and @. 

The dependences of [AF2k[ on 21/2 for the IGSAWS 
model are plotted on Figure 7. It  can be seen that at 
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Figure 7 The dependences AF2k o n  21/2 for the IGSAWS model at 
different values of O, shown on the plot 
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Figure 8 The dependences of the reduced coordination number 
~ / (z -1)  on the reduced temperature r 1. For the IGSAWS model 
q = - O ,  for the other models z~=(Oe~-O)/O0v For the IGSAWS 
model the coordination number z is formally equated to 2, so that 
U(z- 1)= 1 

> 0 they are practically linear, whereas at O < 0 their 
slopes decrease when 2--*0, which is in complete agree- 
ment with theoretical predictions. Moreover, when • > 0, 
the slope of the dependences of AF2k on 21/2 depends 
almost proportionally on O. More accurate logarithmic 
constructions yield that the slope d(AF2k)/d(,~l/2) depends 
on z as z l.05_+ 0.02, and, hence, according to equation (31), 
one can conclude that P/(Pt ----- 1.05 or tp t = 0.5 + 0.08. From 
Figure 7 one can also determine the values of Fo(O ) at 
O>~0 .  When O<~0 ,  the values of Fo(O ) can be 
determined from Figure 5 by means of quadratic extra- 
polation. Finally, we have for the IGSAW model a set 
of sufficiently accurate values of the function Fo(O ) 
within the neighbourhood of the 0 point: Fo ( -0 .06 )=  
- 0.0246, Fo ( - 0.04) = - 0.0170, Fo ( - 0.02) = - 0.0088, 
Fo(0.00)= 0.0000, Fo(0.02)=0.0092 , Fo(0.04)=0.0189 , 
F o(0.06) = 0.0291. 

Plotting the dependence of ln[F 0 (O + AO) + Fo (O-  A O )  

- 2Fo(O) ] on lnlOI, we obtain, according to equation (32), 
that the order K t of the phase transition for the IGSAW 
model is not less than 2 (Kt~> 2), from which it follows 
that q~t ~<0.5. Unfortunately, it is impossible to perform 
such constructions for other models, because we know 
exactly neither the values of Fo(O) nor the values of O0. 
It should be mentioned that the value p =0.5, obtained 
for the IGSAWS model, is in excellent agreement with the 
mean-field prediction according to which the surface of 
the globule grows as the square root of the number of its 
monomers. Assuming that this mean-field value p = 1/2 is 

correct not only in the case of IGSAWS, we construct 
plots analogous to that of Figure 7 and find with their 
help the functions ~(O) at • > Oo for all the other models. 
Figure 8 illustrates the dependences of the quantity 
3(O)/(z-1) on q ,  where z is the coordination number of 
the lattice and zl = (O0,-O)/~0 for all the models except 
IGSAWS and z = 2, zl = - ~ for the IGSAW model. The 
values of O0, are taken from Table 3. It is the proximity 
of the values of~,(O) for the IPSAWS and 1PSAWS models 
that attracts attention in Figure 8. This proximity confirms 
the hypothesis, based on self-similarity, which predicts the 
equivalence of these two models in the limit N ~  ~ .  

The dependences of the slope ~ on the scaling variable 
y=r lN  1/2, constructed with the help of plots of the 
quantity AF2k versus 2 (see Figures 4 and 5), are shown on 
Figure 9a for the IGSAW model and on Figure 9b for all 
other models. (It is assumed that ~ot=0.5 in all cases.) 
These dependences of Figure 9 show the universality of 
the function ?(Y) for different types of lattices as well as 
good agreement with theoretical predictions (see equations 
(35) and (36)). It is to be mentioned that all dependences 
of Figure 9 were plotted in such a way that each of them 
passes through the origin. That is why this figure cannot 
be used as a proof of the exact equality ?t = 1, but still we 
can affirm that the exact value of 7t is very close to unity, 
and in any case is considerably less than 8/7, which is the 
value of the exponent ~t for the model of Duplantier and 
Saleur (DS). There is an even larger discrepancy between 
the DS model and the 1PSAWS model, constructed at 
0 ~ 0 , ~ 0 . 6 5  with each chain starting from the origin 
and confined on the half-plane x ~> 0 (see refs. 52 and 53). 
The dependence of AF2k on 2 for this model is shown in 
Figure 10. Its slope yields the value of the exponent ?it 
close to 0.5, whereas according to ref. 2 71t=8/7. These 
discrepancies may be explained by the less universality of 
the exponent of the free energy than that of the fractal 
dimensionality 1/v t. In connection with this problem we 
ought to mention some very interesting w o r k s  8-11'27'5s 

on renormalization group theory in which the possibility 
of the existence of other universality classes, corresponding 
to the 0 point in two dimensions, is discussed. 

DETERMINATION OF THE CROSSOVER 
EXPONENT (Pt AND CONSTRUCTION OF THE 
SCALING FUNCTIONS 

The analysis of the free energy in the previous section has 
shown that the value of the crossover exponent tpt is close 
to 0.5. Let us dwell upon the more detailed determination 
of the exponent ~0t, based on the analysis of conformational 
characteristics whose dependence on N and • is described, 
if one neglects corrections to scaling, by equation (20). 
Actually, it follows from equation (20) that: 

(t~ In(X2)/O0)I~ =,~0 = const x N ~' (37) 

(c~(X2>/t~O)l~=,0= const x N 2v'+~°~ (38) 

That is why, constructing plots of the dependences of the 
quantities: 

Yx(01, Oz, N) 

=ln(io1 1 O2111n(X2(O1,N))-ln(X2(O2,N))I) (39) 
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and 

;'x(O,, o2, N) 

:,n(,o 1o,, (40) 

on InN with • z and • 2 close to • 0, we can determine 
from their slopes the approximate values of (gt and 2v t -F (Pt, 
respectively. The dependences of Yx(01, • 2, N) versus In N 
for different models are shown on Figure 11a. It appears 
that the values of the slope t~Yx(O~,O2,N)/dlnN are 
almost independent of (I)~ and • 2 in the vicinity of the 0 
point, and the slope itself is decreasing slightly with growth 
of In N. Its value at large In N yields an estimate of the 
value (Pt. This value for different models varies from 0.57 
( 1 P S A W S ,  ( 2 2 >  = <$2>) to 0.45 (IPSAWS, (22> = ( R 2 > )  

(see Table 4). We have also obtained similar values of ~0t 
~ee Table 4), constructing the plots of dependences 
Yx(ln N), (see Figure llb) and subtracting the value of the 
slope d Yx/d InN of the dependence of Yx(01, • 2, N)versus 
In N from the value of the slope 2~x = d In(X2) /a  In N of 
the dependence In(X2>(lnN) at 0 = ( 0 1  +02) /2 ,  both 
slopes being determined at the largest values of InN 
attained in our numerical experiment. Naturally, this 
method is less accurate than the first one, because it 
involves subtraction of two values that are close to each 
other, both being determined with some error. It is 
interesting to note (see Figure llb) that the values Yx for 
all the models of walks on the square lattice (1PSAWS, 
IPSAWS and IGSAWS) are very close to each other. 

The third method of determination of qh has been 
developed from the graphical method proposed in our 
previous papers a'4'aa. Figure 12 shows a typical example 
of the dependences of ( i n ( X 2 > - 2 ~ t l n N )  on InN, 
obtained at several values of O, close to • e, and the value 

o 

u., 

1.21 

1 .1 .  = 

1 . 1 0  I 

0 0.05 

X 

Figure 10 The dependence of AFlo on reciprocal chain length 2 = 1/N 
for the 1PSAWS model on the half-plane. The slope of the straight line 
is approximately equal to the exponent  ~'zt - 1 = - 0 . 5  

of 2~ t being chosen from the interval between the values 
2~ + and 2~_, shown in Table 2. 

Those curves on Figure 12 that belong to the region 
above the 0 point (0  < 0o) appear to be increasing and 
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of the method of finite differences (see equations (39) and (40)) for two values of 0 = 0 1  and 0 = 0 2  in the vicinity of the 0 point: for the 1PSAWS 
and IPSAWS models O1 =0.65, 02=0.67,  for the IPSAWH model • 1 = 1.0, 0 2 =  1.05, for the IGSAWS model O1 = - 0 . 0 2 ,  02=0 .0  and for the 
1PSAWT model • 1 =0.41, 02=0.43 

Table 4 Determination of the crossover exponent Ct for different models, using different methods and different dependences <S z> or <R 2> on N 
and O: the first method (I) by equation (39), the second method (II) by equation (40) and the third method (III) by equation (41) 

Number of Type of 1PSAWH 1PSAWT 1PSAWS IPSAWS IGSAWS 
method dependence 

I <S 2 > 0.56 0.51 0.55 0.49 0.49 

___ 0.03 -t- 0.03 -I- 0.03 -t- 0.03 ___ 0.03 
<R 2 > 0.49 0.53 0.57 0.45 0.48 

__+ 0.03 4- 0.03 4- 0.03 -t- 0.03 4- 0.03 

II <S 2> 0.58 0.58 0.54 0.53 0.50 

+ 0.05 + 0.05 __+ 0.05 + 0.05 4- 0.05 
<R 2> 0.51 0.53 0.52 0.50 0.52 

+ 0.05 + 0.05 + 0.05 4- 0.05 + 0.05 

III <S 2 > 0.48 0.47 0.53 0.52 0.48 

+ 0.05 4- 0.05 __+ 0.05 __+ 0.05 4- 0.05 
<R 2 > 0.48 0.46 0.53 0.47 0.46 

+ 0.05 + 0.05 4- 0.05 4- 0.05 4- 0.05 

concave, whereas those belonging to the region below 
the 0 point (¢)> ~0) appear to be decreasing and convex. 
Let us draw the horizontal segments AB connecting the 
points of the curves that correspond to the two different 
values of the interaction parameter ~A and ~B, the 
differences ~A--~0 and (I) B - ~ 0  being of the same sign. 
We may then define the estimate of the value of the 
crossover exponent q~t as: 

~ t ( N A ,  (I)A, (1)B) = I ln(¢~^- ¢%~ ln(NB/NA) \ ~ /  (41) 

where N A and N B are the coordinates of the points A 
and B. If equation (20) were exact, the length of the 
segment AB would not depend on its position (which is 

determined by N A )  and the ratio ~t would be exactly 
equal to qh. However, the obtained data always yield a 
monotonic increase of the length of the segment AB when 
NA is increasing. In some cases this increase even attains 
50% of the initial length, giving evidence of the existence 
of large corrections to scaling in equation (20). Hence, 
it is clear that in order to obtain the true value of ~t we 
should extrapolate the values of In(NB/NA) to NA--,oO, 
which, unfortunately, has not been done in refs. 3, 4 and 
33. If the corrections to scaling are analytical, the 
correction term decreases as 1iN A, and, hence, in order 
to perform linear extrapolation, we have plotted the 
values IAIB~I=In(NB,/NA,), obtained from Figure 12, 
against 2 A = 1iN A (see Figure 13). As a result, we obtain 
the set of limiting values of the segment length IABli = 
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been defined as: 

) ' -  1 + ~ 0 / ~  ~ > ~0 
T (42) " t  

This definition may be useful because, being defined by 
(42), z remains a small quantity, whose absolute value is 
less than unity.Finally, the constant ln fs(0 ) has been 
assumed to be - 1.58, - 1.39 and - 1.72 for the square, 
honeycomb and triangular lattices, respectively. The 
position of the straight line 2 has been determined for 
the ground state, which is attained when ~ = Go, i.e. when 
z = - 1, and for which, as is easy to calculate, the quantity 
(S2)/N is equal to 1/6, 5/36 and 5/24 for square, 
honeycomb and triangular lattices. It appears that the 
quantity: 

In((S2~/N)I~ = - 1 - In fs(O) 
is equal to approximately 0.2 for all the models. Hence, 
the position of the straight line 2 is also similar for all 
the models. 

Summarizing, we can conclude that the data of Figure 
14 match well with two branches of the same scaling 
function. This matching confirms the universality of the 
behaviour of the scaling functionfs (y) for different lattices 

Figure 12 The dependences ofln((S2)/N 2vt) on In N for the 1PSAWS 
model at different values of ~, shown on the plot. See explanations in 
the text 

limN,,~o IAiBil, which corresponds to different pairs of 
values (OA,,~B,). Choosing the value ~0 so that the 
estimates (oi=ln[(OA--~e)/(CPB--Oo)]/IABli for all pairs 
(~A,,~B,) are close to each other, we obtain the final 
approximation of the crossover exponent (see Table 4). 
Naturally, this method also yields large errors because 
the extrapolation procedure is not well determined. As 
a result, we can affirm with high degree of reliability that 
if the universal value of the exponent ~t exists it must 
be confined within the interval between the values 0.42 
and 0.6. The value ~o + = 3/7, obtained in ref. 2, lies near 
the boundary of the confidence interval, and thus cannot 
be ruled out. 

Let us now discuss the question about the plots of the 
scaling function fx(Y) (see equation (20)). As has been 
mentioned in ref. 54, these plots have the best matching 
of points, corresponding to different values of z and N 
throughout the vast interval of z at some values of critical 
exponents, which by no means are exact. If one takes the 
exact values, the matching is good only within a narrow 
temperature neighbourhood of the critical point and at 
large N only. The attempt to match the branches of the 
scaling function in the broad interval of z by varying the 
values of q~t, vt, ~0 may lead to artifacts. 

Nevertheless, in order to illustrate the correctness of 
the predictions of the scaling theory as a whole, we have 
plotted all the obtained data, concerning ($2) ,  for all 
the models on a single scaling plot of the function 
fs(y)=ln fs(y)- ln fs(O) against ln(N"'lzl) (see Fioure 14). 
For best matching of the branches, we have chosen 
2Vt= 1.175, tPt=0.6 and the following values of ~0: 0.65, 
0.97 and 0.41 for the square, honeycomb and triangular 
lattices, respectively. The reduced temperature z has 

1.5 
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I 0.101 0.02 0.=03 0.104 0~05 - 

K' A 
Figure 13 The length of the segment IAiBil vs. I /N,  according to the 
data of Figure 12 for the 1PSAWS model. The series of points denoted 
by numbers i=  1,2, 3,4 correspond to the pairs of values of (~A~,OB~) 
on Figure 12: for i=1  (0.69, 0.67), for i=2  (0.63, 0.61), for i=3  (0.71, 
0.69) and for i = 4  (0.71, 0.73). The extrapolation of IAiBil yields 
IABI1 = 1.40, IABJ2 = 1.24, JABJa = 0.80, IABI4 = 0.55. Choosing % =  0.652, 
we attain 01 =0.534, 02=0.521, 0a =0.529, 04=0.537; hence we may 
assume ~ot=0.53 (see Table 4) 
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and, as a result, the general concept of the 0 point as a 
tricritical point. When an attempt is made to construct 
that plot with the values vt = 4/7, qh = 1/2, the matching 
is good only within the narrow region IzL <0.1, N>~ 150, 
but this by no means gives no evidence of the 
erroneousness of these values. 

DISCUSSION OF THE RESULTS 

As has been proposed in the recent discussion 8-11,27, the 
coil-globule transitions in different models of two- 
dimensional polymers may belong to different universal- 
ity classes, depending on the type of interaction and 
lattice. In the present paper we have studied five different 
models of a macromolecule in a solvent, three of which 
can be reduced to the traditional model of the 
self-avoiding walk (SAW) on square, honeycomb and 
triangular lattices, and the other two are non-traditional 
models, which cannot be reduced to SAW with 
nearest-neighbour interactions, but nevertheless can be 
regarded as models of a macromolecule in a solvent with 
complicated non-local interactions of monomers. The 
main and the most important conclusion of our work is, 
in our opinion, the conclusion that the exponent v t is 
universal for all five models. Its numerical values for all 
the models are coincident within the range of statistical 
error with the exact value v t =4/7,  predicted in refs. 1 
and 2. Probably, the exponent vt is the most universal 
of all the exponents that describe the coil-globule 
transition, because vt is connected with the most 
important geometrical property of a system, which is its 
fractal dimensionality, and, thus, characterizes not only 
the whole macromolecule itself, but any of its sufficiently 
long parts as well. 

The model of an infinitely prolonging self-avoiding 
walk on a square lattice (IPSAWS) can be regarded as 

a model of the initial part of a very long macromolecule 
in a solvent, whose fractal dimensionality is the same as 
of the whole macromolecule. Apparently, the IPSAWS 
model has the same critical exponents v t and tpt and the 
same free energy per monomer as the 1PSAWS model, 
which can be explained by the fact that one of two halves 
of any SAW is an infinitely prolonging walk. The 
exponents 7t of these two models may differ, but our 
numerical studies (see Figure 4, the section on 'Investiga- 
tion of the free energy' and Appendix 2) show that the 
exponents )'t for these two models also coincide. 

Another new model that we have studied is the model 
of an infinitely growing self-avoiding walk on a square 
lattice (IGSAWS). This model differs from the IPSAWS 
model in the absence of the Rosenbluths' factor, which 
may be regarded as the reciprocal of the Boltzmann factor 
of some additional effective interaction of nearest and 
some next-nearest monomers. Therefore, there are 
serious reasons to assume that these models belong to 
the same universality class of the coil-globule transition. 
At • = 0 our IGSAWS model becomes equivalent to the 
IGSAWS model without interaction of monomers, which 
has been studied in ref 5. As frequently mentioned in the 
literature 1'5'24, this model can be regarded as a model 
of a polymer exactly at the 0 point. Moreover, being 
parts of the external perimeters of percolational clusters, 
the IGSAW on the hexagonal lattice has the same fractal 
dimensionality dh = 7/4, and the exponent vt =4/7.  The 
introduction of the interaction • turns the IGSAW 
model into the IPSAW model with a complicated total 
interaction that consists of the obvious attraction or 
repulsion with parameter • and the implicit attraction, 
which compensates the Rosenbluths' factor and corre- 
sponds to 0 conditions. Thus, the interaction - •  must 
be regarded as the reduced temperature, or, in other 
words, the deviation from the 0 point. Therefore, we may 
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suppose  tha t  bo th  I G S A W S  and  I P S A W S  models  have 
the same crit ical  exponents  vt and ,  p robab ly ,  the same 
exponents  q)t and  ~t as well. The exponen t  Vt is exact ly  
equal  to uni ty  for the I G S A W  model ,  and ,  therefore,  this 
value m a y  be universal  for all  the mode l s  observed  in the 
present  paper .  O u r  numer ica l  da t a  conf i rm this p roposa l ,  
y ie lding for all the mode l s  a value of  Vt confined within 
the in terval  between 0.98 and  1.08, and  a value of  ~o t 
confined within the in terval  between 0.42 and  0.6. 
Unfor tuna te ly ,  our  d a t a  do  no t  a l low us to m a k e  a final 
conclus ion  whether  the values ~t and  q~t of  the I G S A W  
mode l  do  or  do  no t  coincide with those  of  the o ther  
models .  Never theless ,  we can  affirm tha t  the value of 
])t = 8/7 of  the mode l  of  D u p l a n t i e r  and  Saleur  2 differs 
f rom the values of  ~t of  ou r  models ,  whereas  the value 
of Vt = 15/14 p r o p o s e d  in refs. 6 and  27 m a y  be equal  to 
those  of  all our  models ,  except ,  of  course,  I G S A W S .  As 
to the crossover  exponent ,  our  d a t a  are no t  sufficiently 
accura te  to rule ou t  comple te ly  the value of ~0t = 3/7 for 
ou r  models ,  as well as to p rove  the universal i ty  of  any  
o the r  value (~0t=0.5, for example)  for all the mode l s  
observed  in this paper .  However ,  the general  behav iou r  
of  all the s tudied  quant i t ies  d i sp lays  universa l i ty  of  ra ther  
high degree.  

The existence of  two different universal i ty  classes for 
the 0 po in t  and  the 0' po in t  has been conf i rmed recent ly  59, 
where it has also been p r o p o s e d  tha t  a con t inuous  line 
of  cri t ical  po in ts  exists tha t  connects  the s t a n d a r d  0 po in t  
with the 0' po in t  of  Dup lan t i e r  and  Saleur  2. Along  this 
line the cri t ical  exponen t s  are con t inuous ly  changing  
f rom the values ob t a ined  in ref. 2 for the 0' po in t  to  a 
value tha t  is close to those  ob t a ined  in the present  paper .  
The  accuracy  of  ou r  numer ica l  d a t a  does  not  a l low us 
to rule out  the poss ib i l i ty  of  our  mode l s  be longing  to 
different universa l i ty  classes, co r r e spond ing  to neigh- 
bour ing  but  different po in ts  of  this line. On ly  r igorous  
r enorma l i za t ion  g roup  studies can clear  up this quest ion.  
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A P P E N D I X  1 

On the mode l  o f  k inet ical ly  growing walks  ( K G W )  

One  model ,  r egarded  to be a mode l  descr ib ing a 
two-d imens iona l  p o l y m e r  at  the 0 po in t  was the K G W  
model ,  s tudied  for the first t ime by  the Rosenb lu ths  48 as 
ear ly as 1955. But  it  was as late as 198425 when this 
mode l  received its present  name.  Those  au thors  25 
p r o p o s e d  tha t  the K G W  mode l  be longed  to the t r icr i t ical  
universal i ty  class. However ,  this hypothes is  was no t  
conf i rmed by  fur ther  inves t igat ions  6°-62, and  it was 
p r o p o s e d  tha t  K G W  belongs to the  universal i ty  class of  
good  solvents.  The  a im of  the present  s tudy  is to  conf i rm 
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the latter proposal. The K G W  model differs from the 
standard SAW model in the procedure of averaging of 
their characteristics. We can obtain the K G W  model in 
the framework of the description in the second section 
of this work if in equations (9)-(11) we put the 
Rosenbluths' factor equal to unity, ri = 1, and assume 
also that b i - 1 ,  tuk=l, (I)=0, ~{J=0. In order to 
distinguish that averaging from the standard one, we 
shall mark it by the subscript K for example ( R 2 ) K ,  

(Z)K. It is clear that, according to equations (9)-(11), 
taking into account ri = 1, bi = 1, we shall obtain that: 

M 
(Z(N))K = (l/M) ~ w~ = M(N)/M (43) 

i = 1  

i.e. the partition function of the K G W  model is equal to 
the probability of construction of the walk of length N 
without self-intersections in the framework of the 
Rosenbluths' method. 

As clearly follows from equations (9)-(11), the K G W  
model on the hexagonal lattice is equivalent to the SAW 
model if one puts its interaction parameter * = In 2. This 
value is sufficiently less than its value • 0 = 1.02, which 
corresponds to the 0 point, according to our numerical 
data. Therefore, the K G W  model on the honeycomb 
lattice belongs to the region of good solvents and the 
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asymptotic behaviour of the value <R2>K m u s t  undergo 
a crossover from N 2v' at small N to N 2v at large N. The 
Rosenbluths' estimate 4s N T M  at N=100 and the 
e s t i m a t e  25 N 1"33 at N=300 belong to this crossover 
region. 

The value <Z(N)>~: was studied in ref. 51, where SAWs 
on the square lattice were constructed by the Rosenbluths' 
method and the probability of termination of the walk 
at the Nth step was calculated: 

AZ(N) = <Z(N + I)>K- <Z(N)>K 

and the mean length of KGW until its termination was 
estimated as: 

c~ 

N= ~ NAZ(N),~71 (44) 
N = I  

Unfortunately, the asymptote of the quantity AZ(N) at 
large N was calculated erroneously in ref. 51, and because 
of that it was not determined there that the KGW model 
belongs to the universality class of good solvents. We 
have analysed the numerical data of that work 51 with 
the help of equation (14), which has been written, 
according to the analogy with equations (28)-(31), for 
the region of good solvents. Figure 15, which is analogous 
to Figure 4, shows the dependence of the quantity: 

AFzR(1)= 1 In(<Z(N+k)>K~ (45, 

on 2 = 1/N. Beside that, we have constructed analogous 
plots according to our own numerical data for the 
quantity M(N)/M, obtained for the 1PSAW model on 
different lattices and at different values of construction 
potential ~P (see also Figure 15). It is clear that when r i 
in equation (11) is equal to unity, all these models become 
KGW models of different types, which we have called 
models of one-prolonging kinetically growing walks 

(1PKGW). These models apparently belong to the same 
universality class as the common KGW model. Linear 
extrapolation of the quantity AF2k()~ ) up to 240  yields: 

AF2k(2)  = ( ~ k  - -  1)2 + In ( (46) 

where (=(o  for KGW and ~=~1 for 1PKGW. It can be 
seen that the values of 7k for the KGW and 1PKGW 
models are very close to each other and do not depend 
on the type of lattice and the value of W(~k = 1.35 + 0.05). 
At the same time, the quantity ( differs considerably in 
the KGW and 1PKGW models and depends on the type 
of lattice and the value of W. 

The obtained result gives convincing evidence that the 
KGW and 1PKGW models belong to the universality 
class of good solvents, for which 7k = 43/32 (ref. 14). Thus, 
the question of the KGW model can be excluded from 
the agenda. 

APPENDIX 2 

Determination of the exponent 7k for IPSA WS from the 
data of the exact enumeration 

The numbers L~(N) of all the infinitely prolonging 
walks of length N on the square lattice are calculated in 
ref. 5 up to the value N=21. Using the data on the 
numbers L(N) of all SAW of length N (see ref. 57), we 
have studied the asymptotic behaviour of the ratio 
r(N)=L(N)/L~(N) when N--.oo. 

Since it is known that the asymptote of L(N) has the 
form: 

L(N) .,~ ~ N  ~- I (47) 

it is reasonable to assume that the asymptotic behaviour 
of L~(N) has the form: 

Log(N) ~ ~ N  '~ -~ (48) 

Therefore, the ratio of these quantities behaves as: 

r(N) = (~s/~ o0)NN~ - ~ (49) 

Figure 16 shows the dependences of the quantity: 

AF2(1/N) = ½1n[r(N + 1)/r(N- 1)] (50) 

on 2 = 1/N for even and odd N. It can be observed that 
the extrapolated straight lines for both branches of the 
dependence AF2(2 ) intersect the ordinate in the region 
of negative values, i.e. AF2(0)~<0 or ~s-~oo~<0. This 
difference cannot be negative because in the opposite case 
the ratio r(N) would tend to zero, which is impossible. 
Therefore, we must conclude that ~s = ~oo, and the slopes 
of the dependences AF2(2), decrease when 240.  Hence, 
the quantity A~=~-7~  must be less than the effective 
values of the slopes of these dependences at the least 
attained values of 2, i.e. A7<0.012. Therefore, it is 
possible that 7~o is exactly equal to 7- This conclusion is 
also confirmed by our approximate Monte-Carlo 
calculations here (see Figure 5). The equality of the 
free-energy exponents in the region of good solvents 
naturally suggests the hypothesis of the equality of the 
tricritical exponents for these two models, which is also 
in good agreement with our numerical data. 

APPENDIX 3 

Investigation of corrections to scaling 
Determination of corrections to scaling is always a 
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difficult problem. Even in the classical case of SAW 
without attraction, when the value of critical exponent 
v = 3/4 is exactly known, the results of determination of 
the exponent A in the formula: 

(R2~ '~ a2NEv(1 -- bN- a) (51 ) 

by means of numerical experiments are spread over a 
wide interval from 0.65 (ref. 63) to 1.5, according to the 
theory of Nienhuis 14. The majority of numerical 

experiments do not find the corrections greater than 
analytical ones (A= 1), which correspond to the end 
effects in lattice models. 

Our numerical experiments show (see Figure 17) that 
the analytical term A = 1 prevails in equation (51) for the 
1PSAWS model (O = 0). For the IGSAWS model (O = 0), 
assuming that vt=4/7, we obtain that A= 1.5 for (R2~ 
and that the analytical term is still prevailing for ($2) 
(see Figure 18). 
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